What Is BitShares (BTS)? Complete Guide Review About BitShares.

What Is BitShares (BTS)? Complete Guide Review About BitShares.

What Is BitShares (BTS)?

This is the missing white paper and analysis of delegated proof of stake (DPOS). The goal of this paper is to provide an analysis of why DPOS works and what makes it robust. An early description of DPOS can be found at bitshares.org; however, that description also includes many aspects that are not part of the actual consensus process. Like all consensus algorithms, the most harm the block producers can cause is censorship. All blocks must be valid according to the deterministic open source state machine logic.

BitShares All blockchains are fundamentally a deterministic state machine acted upon by transactions. Consensus is the process of agreeing on a deterministic order of transactions and filtering invalid transactions. There are many different consensus algorithms that could produce equivalent ordering of transactions, but DPOS has proven robust, secure, and efficient by years of reliable operation on multiple blockchains.

BitShares Storage Key Points

Coin BasicInformation
Coin NameBitShares
Short NameBTS
Circulating Supply2.99B BTS
Total Supply2,994,600,000
Source CodeClick Here To View Source Code
ExplorersClick Here To View Explorers
Twitter PageClick Here To Visit Twitter Group
WhitepaperClick Here To View
Official Project WebsiteClick Here To Visit Project Website

Summary of DPOS Algorithm

The DPOS algorithm is divided into two parts electing a group of block producers and scheduling production. The election process makes sure that stakeholders are ultimately in control because stakeholders lose the most when the network does not operate smoothly. How people are elected has little impact on how consensus is achieved on a minute by minute basis. Therefore, this document will focus on how consensus is reached after the block producers have been chosen.

BitShares To help explain this algorithm I want to assume 3 block producers, A, B, and C. Because consensus requires 2⁄3 + 1 to resolve all cases, this simplified model will assume that producer C is deemed the tie breaker. In the real world there would be 21 or more block producers. Like proof of work, the general rule is that longest chain wins. Any time an honest peer sees a valid strictly longer chain it will switch from its current fork to the longer one.

Normal Operation

Under normal operation block producers take turns producing a block every 3 seconds. Assuming no one misses their turn then this will produce the longest possible chain. It is invalid for a block producer to produce a block at any other time slot than the one they are scheduled for.

BitShares Up to 1⁄3 of the nodes can be malicious or malfunction and create a minority fork. In this case the minority fork will only produce one block every 9 seconds while the majority fork will produce 2 blocks every 9 seconds. Once again, the honest 2⁄3 majority will always be longer than the minority.

Double Production by Disconnected Minority

BitShares The minority can attempt to produce an unlimited number of forks, but all of their forks will be shorter than the majority chain because the minority is limited to growing the chain slower than the majority. It is entirely possible for the network to fragment in which case no fork has a majority of the block producers. In this case the longest chain will fall to the largest minority. When network connectivity is restored the smaller minorities will naturally switch to the longest chain and unambiguous consensus will be restored.

Double Production by Connected Minority

Under this scenario minority B produced two or more alternative blocks on their time slot. The next scheduled producer ( C ), may choose to build off of any one of the alternatives produced by B. When this happens it will become the longest chain and all nodes that selected B1 will switch forks. It does not matter how many alternative blocks a minority of bad producers attempt to propagate, they will never be part of the longest chain for more than a round.

Last Irreversible Block

In the event of network fragmentation it is possible for multiple forks to continue to grow for a prolonged period of time. In the long-run, the longest chain will win, but observers require a means to know with certainty when a block is absolutely part of the fastest growing chain. This can be determined by seeing confirmation by 2⁄3+1 of the block producers.

BitShares In the diagram below, block B has been confirmed by C and A which represents 2⁄3+1 confirmation and therefore we can infer that no other chains could possibly be longer if 2⁄3 of our producers are honest.